Hessso

Ingénierie et Architecture

OAK - ONBOARDING WITH ACTIONABLE KNOWLEDGE

Francesco Carrino (HEI-VS), Steve Devènes (HEI-VS), Marine Capallera (HEIA-FR), Robin Cherix (HEIA-FR), Elena Mugellini (HEIA-FR)

PROJECT SUMMARY

Problem

The industry is facing a loss of knowledge due to the departure of experienced operators and generational imbalances in the workforce. Traditional internal training is costly, difficult to standardize, and does not effectively meet needs.

Proposed Solution

- Knowledge base to store operational skills experience.
 - Knowledge Graph
 - Knowledge Graph Embedding¹ and similarity search
- Multimodal interface (Tutor) to record the know-how of experienced operators and make operational skills easily accessible
 - User-centered design
 - Augmented reality

METHODS

- Data Analytics
 - Knowledge base Graph database (Neo4j²)
 - Knowledge graph embedding and extraction (Rebel3)
 - Object recognition and tracking in real-time (Yolo⁴)
- Multimodal interface
 - User-centered design
 - Mobile device adapted to the shop floor
 - Record know-how
 - Search and navigate know-how
 - Multimedia DB: (text, audio and video) as inputs/outputs

RÉFÉRENCES

- 1. J. Cao, J. Fang, Z. Meng, and S. Liang, "Knowledge Graph Embedding: A Survey from the Perspective of Representation Spaces." arXiv, Nov. 07, 2022.
- "Neo4j Graph Database & Analytics The Leader in Graph Databases," https://neo4j.com/
- B. P.-L. Huguet Cabot and R. Navigli, "REBEL: Relation Extraction By End-to-end Language generation, 2021
- J. Terven and D. Cordova-Esparza, "A Comprehensive Review of YOLO: From YOLOv1 and Beyond." 2023

RESULTS

- Focus on a real-world application:): quality control of high-precision aluminum plate manufacturing
- Development of a Proof-Of-Concept (novice operator point of view):
 - 1. The operator scans the ID of the plate where a *possible* defect is spotted
 - 2. The operator describes the defects (text, audio and/or video)
 - 3. The system returns a list of the most probable defects
 - 4. The system guides the operator through the steps to measure the gravity of the defect
 - a. Textual, audio and/or video instructions
 - b. Some measurements are supported by specific, integrated AR applications
 - 5. The operator logs the measured value in the system (optionally providing pictures or videos).
 - 6. The operators takes the decision concerning the conformity of the plate: continue production, discard it, or require additional review from a supervisor.

NEXT STEPS

Usability study (Multimodal interface)

- Augmented reality
- Object tracking

Approaches and models comparison (Data analytics)

- Relevance
- Computational resources
- Data security
- Multilanguage

